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| ecture Overview

* (General Description
* First-order and Second-order Systems




System Analysis

* Mathematical Modeling of Physical Systems

* Transfer function and characteristic polynomial

* Typical Test Signals: Impulse, step, and ramp functions
* Analytical solution and computer simulation methods

* Natural and Forced Responses

* Transient and Steady-State Response




Input-Output Model

Linear, time-invariant system that is initially at rest
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The transfer function is given by:
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* Poles are the roots of the denominator polynomial

e Zeros are the roots of the numerator polynomial

* Poles and zeros are either real numbers or they appear as complex
conjugates.




Order of the system

The degree of the polynomial in the denominator of the transfer function
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The number of poles of the transfer function

D8 — 25 W8 —2y ) il S —Z )

G(5) =
(s —p1)(s—D3)...(s —p,)
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Number of state variables




First Order Systems

* Systems with a transfer function that has a characteristic polynomial of
degree one
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First Order Physical Systems

e (eneral form:
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First Order Systems: Step Response
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First Order Systems: Step Response

c(t) = % Normalized response curve
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First Order Systems: Impulse Response

u(t) = Ad(t)
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First Order Systems: Ramp Response
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First Order Systems: Ramp Response
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A property of LTI Systems

(Normalized) Ramp Response

c(t) =t —1+ 71" E/D fort=0

(Normalized) Step Response is the derivative of the ([normalized) ramp
response

c(t)=1—e WD fort=0

(Normalized) Impulse Response is the derivative of the (normalized] step
response

c(t) = %e‘(t/ﬂ fort=>0
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Example

* Impulse response of a system is given by

g(t) — 305t

* Find the time constant, DC gain, and unit step response
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r=2andK = 6 y(t) =6 — 670t
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System ldentification: Experimental Protocol

* Apply unit step input
* Measure steady-state value of the output (gain)

* Measure the time to reach a percentage of the gain [time constant)
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Second Order Systems

e Transfer function without zeros

G(s) = Y(s) wo*

K : Steady-state output [DC GGain)
C : Damping ratio
w, : (Undamped) Natural frequency

* For now, assume that { >0

=K
U(s) s? + 2Lwys + wy?
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Second Order Systems

e Transfer function without zeros

RO

U(S)_K

* Poles of the System

wo?

S% + 20wys + wy?

P12 = —Wo (C /G — 1)

e Poles are either
e distinct real number,

* repeated real numbers, or

e complex conjugates
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Second Order Systems

* (Overdamped response (real and distinct poles]

* Critically damped response (real and repeated poles]

* Underdamped response [complex conjugate poles]

* Un-damped response (complex conjugate poles without real parts]
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Partial Fraction Expansion

e (CASE 1: Distinct real roots

N(s)
(s+r)s+r) - (s+1n)

Y(s) =

 CASE 2: Distinct complex roots
s+1
s(s?+4s+5)

Y(s) =

 CASE 3: Repeated real roots
N(s)

P(s) = (s +71)P(s + Tpaa) = (5 + 1)
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Second Order Physical Systems

e (eneral form:

d?y(t dy(t 1/a
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Second Order Systems

* Overdamped Case (Poles are real and distinct) | { > 1

1 1 _ 1
(Tt 1) Tis+1) Tl’z_wo(éi\/cz—l)

G(s) = K

* GStep Response

u(t) = Ag(t)

y(t) = e(t)KA{l _ [Tle_t/T‘ —Tzet/Tz]}
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Second Order Systems

* Step Response

u(t) = A&t

(1) = g(t)KA{l & U Tz]}

LL—T

 Example

u(t) = e(t) G(s) = -
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Special Case: Dominant Root Approximation

When (> 1

One of the two decaying exponentials decreases much faster than the other
Faster decaying exponential term may be neglected (smaller time constant)

Once the faster decaying exponential term has disappeared, the response
Is similar to that of a first-order system.

Dominant pole is the one closest to the origin

y(t) = Aje 3t + Aje 15t

\

Dominant term
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Second Order Systems

Critically damped Case (Poles are real and equal) (=1

Y(s) wo* K
G(s) = =K ; 2~ 2
U(s) S%2 4+ 2Cwys + wy? (s + 1)

1

1
T_wO(Ciw/CZ - 1) Wy

Step Response

u(t) = A&t

y(t) = £(t)KA[1 = (1 + ffje—t/f} = e(DKA[1 — e 9ot (1 + wyt)]
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Step Response of Second Order Systems
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Second Order Systems

* Underdamped Case (Poles are complex conjugates}) 0<(<1

Y (s) wo? a’ + @*
G(s) = =K =K >
U(s) S%2 4+ 2{wos + wy? (s +a)’+w
Damped natural frequency Attenuation

W = woy1—C? a = (w,

26



Second Order Systems

* Underdamped Case (Poles are complex conjugates}) 0<(<1

Y(s) wo* a’ + w*

G = =K K
(s) U(s) S%2 + 20wys + wy? (s + a)?+w?

* Step Response

u(t) = Aet)  Y(s) == S 1 ¢Wo <@o

s (s+lwg)?+ @2 (s+ (wy)’+m2

y(t) = e(t)KA {1 —e @t (cos wt +

Jlé__@sin at)}
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Step Response of Second Order Systems
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Special Case: Undamped Response

When (=0

The response becomes undamped
Oscillations continue indefinitely with natural frequency

y(t) = e(t)KA[1 — cos wyt]
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Second Order Physical Systems

e (eneral Form:
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Step Response of Second Order Systems
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Transient Response: Underdamped

* Delay time, t;: Time required for the response to reach half of the final
value the very first time

* Rise time, t.: Time required for the response to rise from 0% to 100%
([underdamped system] or from 10% to 90% (overdamped system)

 Peak time, t_: Time required for the response to reach the first peak of the
overshoot.

* Maximum percent overshoot, M,
* Settling time, t_: Time required for the response curve to reach and stay

within a range about the final value of size specified by absolute percentage
of the final value (usually 2% or 3%]
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Transient Response: Underdamped

KA |-

u(t)

P
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Transient Response: Underdamped

Allowable tolerance
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Impulse Response
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Unit-impulse response
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Graphical Representation

P12 = —wo({xjy1—1C%)

p1 = —wol —jwo 1 -0 =—a—jw
p2 = —wol Hwoy1—-8%) =—a+jw

T—f
t, = 5
T
3 _
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System ldentification: Experimental Protocol

* Measure steady-state value of the output (gain)
* Measure the peak value of the output [damping coefficient)

* Measure the time to reach the peak value [natural frequency and time
constant]

1
T=—
a

37



