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Lecture Overview

• General Description

• First-order and Second-order Systems
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System Analysis

• Mathematical Modeling of Physical Systems

• Transfer function and characteristic polynomial

• Typical Test Signals: Impulse, step, and ramp functions

• Analytical solution and computer simulation methods

• Natural and Forced Responses

• Transient and Steady-State Response
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Input-Output Model
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Linear, time-invariant system that is initially at rest

The transfer function is given by:

causality

• Poles are the roots of the denominator polynomial 
• Zeros are the roots of the numerator polynomial
• Poles and zeros are either real numbers or they appear as complex 

conjugates.



Order of the system

5

• The degree of the polynomial in the denominator of the transfer function

• The number of poles of the transfer function

• Minimum number of first order differential equations 
• Number of state variables



First Order Systems
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• Systems with a transfer function that has a characteristic polynomial of 
degree one

The pole of the system is at  

Time constant

Steady State Gain

𝑝 = −
1
𝜏



First Order Physical Systems
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• General form:

𝑎
𝑑𝑦(𝑡)
𝑑𝑡

+ 𝑏𝑦(𝑡) = 𝑢(𝑡) 𝐺 𝑠 =
𝑌(𝑠)
𝑈(𝑠)

=
1/𝑏

𝑎
𝑏 𝑠 + 1

𝑚
𝑑𝑣(𝑡)
𝑑𝑡 + 𝑐𝑣(𝑡) = 𝑓(𝑡)

𝜏 =
𝑚
𝑐

𝐼
𝑑𝜔(𝑡)
𝑑𝑡 + 𝑐𝜔(𝑡) = 𝑇(𝑡)

𝜏 =
𝐼
𝑐

𝑅𝐶
𝑑𝑣(𝑡)
𝑑𝑡 + 𝑣(𝑡) = 𝑣!(𝑡)

𝜏 = 𝑅𝐶



First Order Systems: Step Response
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First Order Systems: Step Response
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Normalized response curve𝑐 𝑡 =
𝑦(𝑡)
𝐾𝐴

𝑐 𝑡 = 1 − 𝑒!(#/%)
𝑠𝑙𝑜𝑝𝑒 =

1
𝜏

𝜏 2𝜏 3𝜏 4𝜏 5𝜏



First Order Systems: Impulse Response
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0.37

𝑦 𝜏 =
𝐾𝐴
𝜏𝑒

= 0.37
𝐾𝐴
𝜏



First Order Systems: Ramp Response
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𝑌 𝑠 =
𝐾

𝜏𝑠 + 1
1
𝑠"
=
𝐴#
𝑠"
+
𝐴"
𝑠
+

𝐴$
𝜏𝑠 + 1

𝐴# = lim
!→&

𝑌(𝑠)𝑠" = lim
!→&

𝐾𝐴
𝜏𝑠 + 1

= 𝐾𝐴

𝐴$ = lim
!→'#/)

𝑌(𝑠)(𝜏𝑠 + 1) = lim
!→'#/)

𝐾𝐴
𝑠"

= 𝐾𝐴𝜏"

𝐴" = lim
!→&

𝑑
𝑑𝑠
[𝑌 𝑠 𝑠"] = lim

!→&

−𝐾𝐴𝜏
(𝜏𝑠 + 1)"

= −𝐾𝐴𝜏



First Order Systems: Ramp Response
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Normalized response curve
𝑐 𝑡 =

𝑦(𝑡)
𝐾𝐴

2𝜏 4𝜏 6𝜏

2𝜏

4𝜏

6𝜏



A property of LTI Systems
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• (Normalized) Ramp Response

• (Normalized) Step Response is the derivative of the (normalized) ramp 
response

• (Normalized) Impulse Response is the derivative of the (normalized) step 
response

𝑐 𝑡 = 1 − 𝑒'(+/))

𝑐 𝑡 =
1
𝜏
𝑒'(+/))

𝑐 𝑡 = 𝑡 − 𝜏 + 𝜏𝑒'(+/)) 𝑓𝑜𝑟 𝑡 ≥ 0

𝑓𝑜𝑟 𝑡 ≥ 0

𝑓𝑜𝑟 𝑡 ≥ 0



Example
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• Impulse response of a system is given by

• Find the time constant, DC gain, and unit step response

𝑔 𝑡 = 3𝑒'&..+

𝐺 𝑠 =
3

𝑠 + 0.5
=

6
2𝑠 + 1

𝑌 𝑠 =
1
𝑠
×

3
𝑠 + 0.5

=
6
𝑠
−

6
𝑠 + 0.5

𝑦 𝑡 = 6 − 6𝑒'&..+𝜏 = 2 and 𝐾 = 6



System Identification: Experimental Protocol 
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• Apply unit step input

• Measure steady-state value of the output (gain)

• Measure the time to reach a percentage of the gain (time constant)



Second Order Systems
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• Transfer function without zeros

• For now, assume that

𝐺 𝑠 =
𝑌(𝑠)
𝑈(𝑠) = 𝐾

𝜔!"

𝑠" + 2ζ𝜔!𝑠 + 𝜔!"

ζ ≥ 0

K : Steady-state output (DC Gain)
ζ : Damping ratio
ω0 : (Undamped) Natural frequency



Second Order Systems
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• Poles of the System

• Poles are either 
• distinct real number, 
• repeated real numbers, or 
• complex conjugates

𝐺 𝑠 =
𝑌(𝑠)
𝑈(𝑠) = 𝐾

𝜔!"

𝑠" + 2ζ𝜔!𝑠 + 𝜔!"

𝑝#," = −𝜔! ζ ± ζ" − 1

• Transfer function without zeros



Second Order Systems

• Overdamped response (real and distinct poles)

• Critically damped response (real and repeated poles)

• Underdamped response (complex conjugate poles)

• Un-damped response (complex conjugate poles without real parts)
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Partial Fraction Expansion
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• CASE 1: Distinct real roots

𝑌 𝑠 =
𝑁(𝑠)

𝑠 + 𝑟# 𝑠 + 𝑟" 444 (𝑠 + 𝑟%)

• CASE 2: Distinct complex roots

𝑌 𝑠 =
𝑠 + 1

𝑠 𝑠" + 4𝑠 + 5

• CASE 3: Repeated real roots

𝑌 𝑠 =
𝑁(𝑠)

𝑠 + 𝑟# & 𝑠 + 𝑟&'# 444 (𝑠 + 𝑟%)



Second Order Physical Systems
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• General form:

𝑎
𝑑"𝑦(𝑡)
𝑑𝑡" + 𝑏

𝑑𝑦(𝑡)
𝑑𝑡 + 𝑐𝑦(𝑡) = 𝑢(𝑡)

𝑚
𝑑"𝑥(𝑡)
𝑑𝑡"

+ 𝑐
𝑑𝑥(𝑡)
𝑑𝑡

+ 𝑘𝑥(𝑡) = 𝑓(𝑡) 𝐿𝐶
𝑑"𝑣(𝑡)
𝑑𝑡"

+ 𝑅𝐶
𝑑𝑣(𝑡)
𝑑𝑡

+ 𝑣(𝑡) = 𝑣!(𝑡)

𝐺 𝑠 =
1/𝑎

𝑠" + 𝑏𝑎 𝑠 +
𝑐
𝑎



Second Order Systems
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• Overdamped Case (Poles are real and distinct) 

• Step Response

𝜏#," =
1

𝜔! ζ ± ζ" − 1

ζ > 1



Second Order Systems
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• Step Response

• Example

𝑢 𝑡 = 𝜀(𝑡) 𝐺 𝑠 =
1

4𝑠 + 1 𝑠 + 1
=

0.25
𝑠" + 1.25𝑠 + 0.25

𝑦 𝑡 = 1 −
1
3
4𝑒' ⁄+ 0 − 𝑒'+

𝐺 𝑠 = 𝐾
𝜔'(

𝑠( + 2ζ𝜔'𝑠 + 𝜔'(

𝜏),( =
1

𝜔' ζ ± ζ( − 1
= −

1
𝑝),(



Special Case: Dominant Root Approximation
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When 

• One of the two decaying exponentials decreases much faster than the other

• Faster decaying exponential term may be neglected (smaller time constant)

• Once the faster decaying exponential term has disappeared, the response 
is similar to that of a first-order system.

• Dominant pole is the one closest to the origin 

ζ ≫ 1

𝑦 𝑡 = 𝐴#𝑒'$+ + 𝐴#𝑒'#.+

Dominant term



Second Order Systems
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• Critically damped Case (Poles are real and equal) 

• Step Response

= 𝜀 𝑡 𝐾𝐴[1 − 𝑒23!4 1 + 𝜔5𝑡 ]

ζ = 1

𝐺 𝑠 =
𝑌(𝑠)
𝑈(𝑠) = 𝐾

𝜔!"

𝑠" + 2ζ𝜔!𝑠 + 𝜔!"
=

𝐾
𝜏𝑠 + 1 "

𝜏 =
1

𝜔! ζ ± ζ" − 1
=

1
𝜔!



Step Response of Second Order Systems
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Second Order Systems
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• Underdamped Case (Poles are complex conjugates) 0 ≤ ζ < 1

𝐺 𝑠 =
𝑌(𝑠)
𝑈(𝑠)

= 𝐾
𝜔!"

𝑠" + 2ζ𝜔!𝑠 + 𝜔!"
= 𝐾

𝑎" + <𝜔"

(𝑠 + 𝑎)"+<𝜔"

Damped natural frequency Attenuation

𝑎 = ζ𝜔!<𝜔 = 𝜔! 1 − ζ"



Second Order Systems
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• Underdamped Case (Poles are complex conjugates) 

• Step Response

𝑌 𝑠 =
1
𝑠 −

𝑠 + ζ𝜔5
𝑠 + ζ𝜔5 6 + 5𝜔6 −

ζ𝜔5
(𝑠 + ζ𝜔5)6+5𝜔6

0 ≤ ζ < 1

𝐺 𝑠 =
𝑌(𝑠)
𝑈(𝑠) = 𝐾

𝜔!"

𝑠" + 2ζ𝜔!𝑠 + 𝜔!"
= 𝐾

𝑎" + <𝜔"

(𝑠 + 𝑎)"+<𝜔"

𝑦(𝑡) = 𝜀 𝑡 𝐾𝐴 1 − 𝑒274 cos 5𝜔𝑡 +
ζ

1 − ζ6
sin 5𝜔𝑡



Step Response of Second Order Systems
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Special Case: Undamped Response
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When 

• The response becomes undamped
• Oscillations continue indefinitely with natural frequency

ζ = 0

𝑦(𝑡) = 𝜀 𝑡 𝐾𝐴[1 − cos𝜔5𝑡]



Second Order Physical Systems
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• General Form:

𝑚
𝑑"𝑥(𝑡)
𝑑𝑡" + 𝑘𝑥(𝑡) = 𝑓(𝑡)

𝜔& =
𝑘
𝑚 𝐿𝐶

𝑑"𝑣(𝑡)
𝑑𝑡"

+ 𝑣(𝑡) = 𝑣!(𝑡)

𝜔& =
1
𝐿𝐶

𝑎
𝑑"𝑦(𝑡)
𝑑𝑡"

+ 𝑐𝑦(𝑡) = 𝑢(𝑡) 𝐺 𝑠 =
1/𝑎

𝑠" + 𝑐
𝑎



Step Response of Second Order Systems
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Transient Response: Underdamped
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• Delay time, td: Time required for the response to reach half of the final 
value the very first time

• Rise time, tt: Time required for the response to rise from 0% to 100% 
(underdamped system) or from 10% to 90% (overdamped system)

• Peak time, tp: Time required for the response to reach the first peak of the 
overshoot.

• Maximum percent overshoot, Mp

• Settling time, ts: Time required for the response curve to reach and stay 
within a range about the final value of size specified by absolute percentage 
of the final value  (usually 2% or 5%)



Transient Response: Underdamped
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Transient Response: Underdamped
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𝑦(𝑡)
𝐾𝐴



Impulse Response
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𝑦 𝑡 = 𝜀(𝑡)𝐾𝐴
𝜔5
1 − ζ6

𝑒274 sin 5𝜔𝑡

𝐺 𝑠 = 𝐾
𝜔!"

𝑠" + 2ζ𝜔!𝑠 + 𝜔!"
= 𝐾

𝑎" + <𝜔"

(𝑠 + 𝑎)"+<𝜔"



Graphical Representation
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𝑝#," = −𝜔&(ζ± 𝑗 1 − ζ") 𝑝# = −𝜔&ζ−𝑗𝜔& 1 − ζ") = −𝑎 − 𝑗[𝜔

𝑝" = −𝜔&ζ+𝑗𝜔& 1 − ζ") = −𝑎 + 𝑗[𝜔

𝑗 5𝜔

−𝑎

𝜔5
𝑡2 =

𝜋 − 𝛽
[𝜔

𝑡3 =
𝜋
[𝜔

𝑡! =
3
𝑎

5% criterion



System Identification: Experimental Protocol 

37

• Measure steady-state value of the output (gain)

• Measure the peak value of the output (damping coefficient)

• Measure the time to reach the peak value (natural frequency and time 
constant)

𝜏 =
1
𝑎


